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Abstract: - It is recognized that data, information, knowledge, and intelligence are the fundamental cognitive 
objects in the brain and cognitive systems. However, there is a lack of formal studies and rigorous models 
towards them. This paper explores the cognitive and mathematical models of the cognitive objects. The 
taxonomy and cognitive foundations of abstract mental objects are explored. A set of mathematical models of 
data, information, knowledge, and intelligence is formally created. On the basis of the cognitive and 
mathematical models of the cognitive objects, formal properties and relationship of contemporary data, 
information, knowledge, and intelligence are rigorously explained.   
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1. Introduction 
A general worldview of cognitive informatics 
reveals that the natural world is a dual 
encompassing both the physical world and the 
abstract world as shown in Fig. 1 [43, 45, 48, 74, 76, 
78]. There are four essences in modeling the natural 
world known as matter and energy for the physical 
world, as well as information and intelligence for 
the abstract world.  
     Definition 1. The universe of discourse of the 
mankind is a dual that can be denoted by the 
information-matter-energy-intelligence (IME-I) 
model of the natural world (NW). One facet of it is 
the physical world (PW), and the other is the 
abstract world (AW), where intelligence (  ) plays a 
central role in the transformation between 
information (I), matter (M), and energy (E). 
      In the IME-I model, the double arrows denote 
bi-directional relations between the essences in the 
dual universe of discourse, where known relations 
are denoted by solid lines, and relations yet to be 
discovered are denoted by dashed lines. According 
to the IME-I model, information is the generic 
model for representing the abstract world perceived 
by human beings.  It is noteworthy that intelligence 
(  ) plays an irreplaceable role in the transformation 
between information, matter, and energy according 
to the IME-I model.  

      All cognitive objects in the forms of data, 
information, knowledge, and intelligence are a result 
of abstraction as a gifted ability of human brain [2, 
6, 8, 25, 27, 28, 32, 34, 39, 42, 48, 58, 68, 76]. 
Abstraction is a basic cognitive process of the brain 
at the cognitive layer according to the Layered 
Reference Model of the Brain (LRMB) [89].  
   

 

 

Fig. 1. The IME-I model of the worldview 

 
      Definition 2. Abstraction is a cognitive process 
to elicit a target subset of objects in a given 
discourse that shares a common property as an 
identity of the subset from the whole in order to 
facilitate denotation and reasoning.       

 

   I 

 E M 

  The abstract world (AW) 

 The physical world (PW) 

The natural world 
          (NW) 

   
  

WSEAS TRANSACTIONS on COMPUTERS Yingxu Wang

E-ISSN: 2224-2872 770 Volume 14, 2015



      Abstraction is not only a cognitive process of 
knowledge acquisition and learning, but also a 
powerful means of philosophy and mathematics. 
Abstraction plays a centric role in human cognition, 
thinking, and reasoning because all types of 
cognitive objects represented in the brain are in the 
abstract form. No formal inference and thinking 
may be conducted without the cognitive objects 
yield by abstraction. 
      Mathematics is the abstract science of numbers, 
quantity, and space as well as their applications in 
all other disciplines of sciences, engineering, 
society, and humanities. In order to efficiently and 
rigorously deal with the complex problems in 
abstract intelligence, brain science, cognitive 
informatics, knowledge science, and system science, 
a set of contemporary mathematics has been 
developed collectively known as denotational 
mathematics [48, 52, 60, 66, 70, 76, 79, 81, 82, 93].              
      Definition 3. Denotational mathematics (DM) is 
a category of mathematical structures that deals with 
complex mathematical entities in the domain of 

hyperstructures () beyond those of real numbers 

() and bits (), by series of embedded functions 

and processes in order to formalize rigorous 
expressions and inferences. 
      Denotational mathematics as function of 
functions on hyperstructures deals with high-level 
mathematical entities beyond numbers and sets, 
such as abstract objects, complex relations, big data, 
information, concepts, knowledge, processes, 
inferences, decisions, intelligence, and systems [67, 
70]. 
      This paper is a basic study that explores and 
contrasts the cognitive and mathematical models of 
cognitive objects in the brain such as data, 
information, knowledge, and intelligence. In the 
remainder of this paper, the taxonomy and cognitive 
foundations of cognitive objects is explored in 
Section 2. A set of mathematical models of data, 
information, knowledge, and intelligence is created, 
respectively, in Sections 3 through 6. On the basis 
of the conceptual and formal models of the 
cognitive objects, formal principles and properties 
of data, information, knowledge, and intelligence is 
explained and their relationship is clarified.  

 
2. Taxonomy of Cognitive Objects in 
    the Brain 
Although it is well recognized that data, 
information, knowledge, and intelligence are the 
fundamental cognitive objects in the brain and 

cognitive systems, there is a lack of formal studies 
on them. The contemporary and traditional 
perceptions, metaphors, and relationships of 
cognitive objects are contrasted and elaborated in 
this section.    
      The taxonomy of cognitive objects represented 
in the brain can be classified into four forms [6, 7, 
11, 25, 34, 39, 42, 48, 49, 58, 61, 68, 76] as 
illustrated in Fig. 1. It is perceived that data are 
acquired raw information which are usually a 
quantitative abstraction of external entities and their 
relations. Information is meaningful data or an 
interpretation of data. Knowledge is consumed 
information related to existing knowledge in the 
brain. Intelligence is a collection of cognitive 
abilities of humans or systems that transforms 
information into behaviors [68, 74, 76, 78, 80].                

 

 
 

Fig. 2. The hierarchical framework of cognitive objects 
 

      Definition 4. The hierarchy of cognitive objects, 
CO, represented in human brain is a 4-tuple in the 
categories of data (), information (), knowledge 
(), and intelligence (  ) from the bottom up 
according to their levels of abstraction, i.e.:  
 

    
( , , , )

:

:

:

:

d

i

k

i

f O Q

f D S

f I C

f I B

 
     
   





CO    





                      (1) 

 

where the symbols denote object (O), quantity (Q), 
semantics (S), concept (C), and behavior (B), 
respectively.   
      Definition 5. The hierarchical abstraction 
model (HAM) of knowledge states that the extent of 
abstraction of cognitive information can be 
classified at five levels such as those of analogue 
objects, diagrams, natural languages, professional 
notations, and mathematics.   
      The HAM model is illustrated in Fig. 3 where 
each level is corresponding to a certain descriptive 
means. The higher the level of abstraction, the 
higher the efficiency in reasoning. Inversely, the 
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lower the level of abstraction, the easier the intuition 
in comprehension. According to the HAM model, 
there are two approaches to system modeling and 
description known as abstraction and explanation. 
The former enables the enhancement of the 
descriptive power in terms of expressiveness, 
precise, and rigor; while the latter enables the 
improvement of intuitiveness in understanding and 
comprehension using a means much closer to real-
world images and analogue objects directly acquired 
by sensations of the brain. 
 

 
 

Fig. 3. The Hierarchical Abstraction Model (HAM) of 
knowledge and information 

      It is noteworthy in HAM that the core scientific 
knowledge of humans is mainly archived in 
mathematical forms [48, 61]. That is, any other form 
of knowledge would be merely data, factor, and 
instances towards principles expressed in 
mathematical forms in the widest and most general 
domain.        
 
 

3. Formal Models of Data 
Data are the most fundamental cognitive objects in 
the brain that link the real-world entities and their 
attributes to mental abstractions via sensor and 
quantities [9, 15, 21, 38, 40, 41, 48, 81].   
 
      Definition 6. Data are an abstract representation 
of the quantity of real-world entities or abstract 
objects according to specific quantification scales. 
  

      Big data are extremely large-scaled 
heterogeneous data in terms of quantity, complexity, 
semantics, distribution, and processing costs in 
computer science, information science, cognitive 
informatics, web-based computing, cloud 
computing, and computational intelligence [15, 81].  

      Corollary 1. Data is generated by human 
cognitive processes and formal inferences, as well 
as system quantifications.  
      In Corollary 1, the cognitive processes refer to 
observation, sensor, abstraction, and reasoning; 
while formal inferences refer to qualification, 
quantification, mathematical operations, statistics, 
information processing, and computing. A special 
form of data is known as signals directly yielded by 
sensors and communication systems, which link 
data to information. 
      The domain of number theories for 
quantification in mathematics has been continuously 
expanding from binary numbers (), natural 
numbers (), integers (), and real numbers () to 
fuzzy numbers () and hyper numbers () [18, 35, 
37, 48, 52, 53, 60, 66, 70, 82, 96]. It demonstrates 
an interesting course of advances in human ability 
of abstraction and quantification in order to deal 
with the real-world entities and their perceptive 
representations in the brain. The characteristics of 
the domain of fuzzy numbers  is a 2-demential 
hyperstructure , with a crisp 
set of member elements in [-∞, +∞] and an associate 
crisp set of degrees of membership in [0, 1] for each 
of the members. Hyper numbers, , is a 
contemporary extension of the domain of numbers 
to a typed n-tuple [48, 76, 81]. 
      Definition 7. Data with respect to a quantity X 
against a measure scale S , ( , )D X S , is yielded via 

a quantification ( )XS  that results in a real number, 

.X XI RS S , in unit [ ]S denoted by the integer part XIS  

and the decimal part XRS  known as the remainder, 

i.e.: 
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       Example 2. Given the length of an object as 
estimated as L = 1682 mm, corresponding data may 
be generated based on the given measure scale(s) S
according to Definition 7 as follows: 
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      Definition 8. Big data are extremely large-
scaled heterogeneous data in terms of quantity, 
complexity, semantics, distribution, and processing 
costs in computer science, information science, 
cognitive informatics, web-based computing, cloud 
computing, and computational intelligence. 
      Definition 9. The mathematical model of the 
general big data structure (BDS),  , in the 
discourse of abstract data is a two dimensional n  

m matrix where each row  

0
SM|
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i
i

rR
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j j
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i j

dR R
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can be a meta data element or structured element
|  , i.e.:            
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where the set of types allows arbitrary forms and 
medias of data are represented.     
      The general abstract model of big data systems 
as given in Definition 9 can be used to represent arbitrary 
multi-dimensional big data structures by modeling the 
structured element |SM as an n-D structure. This 
methodology provides a general and flexible approach to 
model any complex big data structure in the real world 
known as the hierarchical refinement model of big data. 
 
 
4. Formal Models of Information 
Information is the second level of cognitive objects 
that represents or embodies the semantics of data 
and facts collected from the real-world or yielded by 
mental processes. Information is the third essence 
for modeling the natural world in addition to matter 
and energy as described in the IME-I model in 
Definition 1.  
      Definition 10. Information is a general form of 
abstract objects perceived by human brains and 
represented by symbolical, mathematical, 
communication, computing, and cognitive systems. 
      According to Definition 10, anything intangible, 
which the brain may acquire and process or which a 

computing/communication system may manipulate 
and convey, is a kind of information. However, 
anything tangible that cannot enter the brain is not 
information, although its attributes, quantity, and 
properties are information. Any product and/or 
process of human mental activities result in the 
generation of information.      
      In classic information theory [3, 5, 16, 33, 98], 
information is treated as a probabilistic measure of 
properties of message in signal transmission. The 
early notion of information is highly influenced by 
the thermal dynamic concept known as entropy, 
which denotes the extent of the trend of a system 
towards disorder or randomization. Classic 
information theories focused on information 
transmission rather than information itself. The 
measure of the quantity of information is highly 
depended on the receiver’s subjective judgment on 
the probability distributions of signals in the 
message. 
      Definition 11. The content of information, Ii, of 
the ith sign in a message is determined by its 
unexpected probability 1

ip  in a 2-based logarithm 

scale given its average probability is pi in a two sign 
system, i.e.:  

 

2

1
log    [ ]i

i

I bit
p

                           (4) 

 

where the unit of information is a bit shortened from 
a binary digit. Any other base k, k > 1, can be 
transformed into the binary base.      
      Definition 12. The information of an n-sign 
system, I, is determined by a weighted sum of the 
probabilities pi and unexpectedness Ii of each sign in 
the information system, i.e.: 
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      Example 3. For a binary signal source, S1, that 
adopts two equal-probability signs, i.e., p1 = p2 = 0.5, 
its total information, 

1SI , according to Definition 12 

is:  
 

1

2

2
1
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log
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I p
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      Example 4. Given a natural-language-based 
communication system in English, S2, assume the 
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probability of each of the 27 alphabets is the same, 
i.e., p1 = p2 =…= p27 = 1/27, the total information of 
the system 

2SI  normalized to bit according to 

Definition 12 is: 
 

1

27

1

27

2
1

1
    log 27

27

1
    27 4.7549 4.7549  [ ]

27

S i i
i

i
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
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      It is noteworthy that in the bivalent systems, the 
content of information is always with a certain bits as 
the inherent property of signals. In other words, I is 
not proportional to the size of messages. That is, on 
the basis of the classical information measurement, 
no matter how many bits of message are transmitted, 
the value of total information is merely a probable 
property of the given system rather than the size of 
the transmitted information. Classic information 
theories focused on information transmission rather 
than information itself. Further, the property of 
classic information, pi, is determined by the 
receiver’s subjective expectation. Thus, there is no 
information when a message received had already 
been known due to pi 1.       
      However, modern computational informatics 
tends to model information as an abstract entity for 
data, memory, messages, signals, and knowledge 
representation rather than a probable property of 
communication system as in the classic information 
theory. This notion reflexes the contemporary 
theories and practices across computer science, 
software engineering, the IT industry, and everyday 
lives [45, 48, 76, 87, 88]. 
      Definition 13. Information, I, in computational 
informatics is the normalized 2-based size of any 
abstract object Ok arbitrarily represented in a k-
based measure scale Sk, i.e.: 
 

 

  
log

2

2

: ,  

 log

  log   [ ]

k k

k k k

O

k

I f O S k

k k

O k bit

 


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 
                    (6) 

 

      Note that the unit of bit in Eq. 6 is concrete and 
deterministic, which is no longer a scalar quantity as 
that of Shannon informatics. In other words, the unit 
bit has been extended to a general quantity of 
information size in computer science and modern 
information science. 
      Example 5. For a natural-language-based 
communication system in English, the information 
transformed by 100 letters, i.e., Ok = O27 = 100, can 
be equivalently normalized in bit according to 
Definition 13 as follows: 

 

2

27 2

log

 log 27

 100 4.7549

 475.4900 

kI O k

O

bit



 


 

 

The result indicates that the minimum information 
required to transmit O27 = 100 letters is 476 bits 
without redundancy. 
      The contemporary information theory is merged 
in cognitive informatics [43, 45, 46, 49, 52, 58, 59, 
62, 63, 66-68, 71, 72, 74, 75, 82, 84-92]. Cognitive 
informatics (CI) is a transdisciplinary enquiry on the 
internal information processing mechanisms and 
processes of the brain and minds in order to reveal 
the principles of natural intelligence and engineering 
applications [43, 45]. 
      It is discovered in cognitive informatics that the 
computational information as given in Definition 13 
[45, 48] may still not represent the entire properties 
of information. In other words, the third generation 
of information may be described by a more general 
model towards the abstract artefact or its symbolic 
representation that can be modeled, acquired, 
memorized, and processed by human brains. 
      Definition 14. Contemporary information, 

( , )I I I  , is a tuple of general two-dimensional 

properties inherent in any system called the 
characteristic information I and the denotational 

information I , generated by the combinatorial 

mechanism of system variables 1 2={ , ,..., }V v v v on 

a given base  of representation,   , i.e.: 
 

      

2

2 2
 

| |log| |
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| | log log [ ]
 

2 2    [ ]I VV

I I I

I V I bit

I bit




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







 
 

  


            (7) 

 

where I is determined by the size of the problem 

dimensions , I  is determined by the entire state 

space of the system as a combinatorial function of
I and . Both and I I   are normalized to the unit 

bit with respect to 0 = 2.    
      The third generation of information as formally 
modeled in Definition 14 reveals that information is 
an inherent property of any system where the 
normalized denotational information is determined 
by its characteristic information, and vice versa. The 
measure of cognitive information is compatible to 
but more general than the classic and computational 
information. For instance, many problems that 
Shannon information theory cannot deal with as 
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given in Examples 6 through 8 can be solved by the 
contemporary information measure.            
       Example 6. For a natural-language-based 
communication system in English (1 = 27), the 
information for transmitting  1| | =100 lettersV can be 

equivalently normalized in bit according to 
Definition 14 as follows: 
 

    
1

  1 1 2 1
 

1

1 2 1

| | | |log 100 • 4.7549 475.4900
1

| | log 100 • 4.7549 475.4900

2 2 2V V

I V bit

I bit

 



  
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where, it is noteworthy, that the classic information 
measure yields 4.7549 bit as obtained in Example 4 
ignoring 1| |V . However, the computational 

information measure as shown in Example 5 does 
not cover the other important facet of information 
known as the denotational information.           

Example 7. The big data represented in the state 
space of a logical AND-gate with 1,000 input pins 
can be determined according to Definition 14 where

2| | = 1000 V bit and 2 = 2 as follows: 
 

  
     

2

2 2

2

2 2 2 2

| | 1000
2

| | log | | = 1000

2 2  
IV

I V V bit

I bit

 



 

  
 

 

where note that the classic information measure 
yields 1 bit.  
      Example 8. Given a communication system 
specified as  3| | = 70V  decimal digits on base 3 = 10, 

what is its capacity for information representation 
and what is its equivalent characteristic information 
normalized to base 2?  
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That is, the given decimal system possesses a 233 
bit characteristic information and a 2233 bit 
denotational information space in the normalized 
scale. However, the classic information measure 
yields only 3.3220 bit for the given system.  
      Corollary 2. The computational information 

2G cI I  is a special case of cognitive information 
3 ( , )G CII I I I    where only characteristic 

information is considered, i.e.: 
 

 

3 32 . , ( , )G GG c CII I I I I I I I I            (8) 
 

where   denotes a subdimension in a 
hyperstructure. 

      Corollary 3. The classic Shannon information 
1G sI I  is a special case of the characteristic 

information I  where the size of information is not 

considered, i.e.: 
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5. Formal Models of Knowledge 
Knowledge is the third level of cognitive objects as 
learnt and comprehended information. Knowledge is 
creative products generated by the brain embodied 
by concept networks and behavioral processes. The 
former represent the form of to-be knowledge; while 
the latter embody the form of to-do knowledge, 
which is more precisely classified as intelligence as 
elaborated in Section 6.      
      In traditional epistemology, knowledge is 
perceived as a justified true belief [10, 11, 32, 83] 
expressed as follows.  
      Definition 15. The tripartite form of knowledge 
perceives knowledge k as a subjective proposition of 
a person H that is p iff H believes that p and H’s 
belief that p is justified, i.e.:       
 
 

 

, , and ,  , 

  : T ( T)H

p H k

k p p


 

 
  

               (10) 

 

where denotes an inference, H a justification of 
the inference by H,  p a proposition,   a certain 
threshold of confidence, and T the logical constant 
of true. 
      The neurological foundation of knowledge can 
be explained by synaptic connections among 
neurons representing individual objects and 
attributes as shown in Fig. 4. The dynamic neural 
cluster (DNC) indicates that knowledge is not only 
retained in neurons as individual objects or 
attributes, but also dynamically represented by 
newly created synaptic connections. This leads to 
the development of the formal object-attribute-
relation model of knowledge [50]. 
      Definition 16. The object-attribute-relation 
(OAR) model of memory in the brain is a triple, i.e.: 
 

                              OAR  (O, A, R)                    (11) 
 

where O is a set of objects identified by unique 
symbolic names, A a set of attributes for 
characterizing an object, and R a set of relations 
between the objects and attributes, i.e., R = O  A. 
      The OAR model reveals the nature and essence 
of knowledge and its neurological foundations. The 
OAR model can be adopted to explain a wide range 
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of human information processing mechanisms and 
cognitive processes. 

  
 

     O1 

  A11 

     O2 

  A12 

  A13 

  A22 

  A23 

  A2j   A1i 

 A2m' 

  A21 

 A1m 

    r(O1, O2) 

   r(A11, A21) 

      r(O1, A1m)  r(O2, A2m’) 

    r(O1, A2j)      r(O2, A1i) 

 
Fig. 4. The OAR model of knowledge  
as a dynamic neural cluster (DNC) 

 
      Definition 17. Knowledge, K, is acquired and 
comprehended information generated by the brain 
embodied as a concept, i.e.: 
 

: kK f I C                          (12) 
 

where C represents a formal concepts as modeled in 
the PAR model and concept algebra [50, 57]. 
   
      Investigation into the cognitive models of 
information and knowledge representation in the 
brain is perceived to be one of the fundamental 
research areas that help to unveil the mechanisms of 
the brain. The OAR model describes human 
memory, particularly long-term memory, using the 
relational metaphor, rather than the traditional 
container metaphor that was used to be adopted in 
psychology, cognitive science, computing, and 
information science. The OAR model shows that 
human memory and knowledge are represented by 
relations, i.e., connections of synapses between 
neurons, rather than by the neurons themselves as 
the traditional container metaphor perceived.  
 
      Corollary 4. Knowledge is a synaptic 
connection among neurons in the brain.     
 
      According to cognitive informatics and 
neuroinformatics [13, 72, 87], the structures and 
configurations of the human memory system can be 
logically described by a cognitive memory model as 
follows.   
 
      Definition 18. The cognitive memory model 
(CMM) is a functional partition of the human 
memory system in a parallel configuration (||) with 
five-type memories according to their functions, i.e.: 

 

   

  

(  

            ||

            ||

            ||

            ||

          )

CMM LTM

STM

SBM

ABM

CSM



                          (13) 

 

 
where memories stand for long-term memory 
(LTM), short-term memory (STM), sensory buffer 
memory (SBM), action buffer memory (ABM), and 
conscious status memory (CSM), respectively. 
      Knowledge is acquired via learning and 
inference that is retained in different forms/areas of 
memories. According to CMM [72], the forms of 
abstract, behavioral, experienced, and skilled 
knowledge are retained in the temporal lobe of 
LTM, the motor cortex of ABM, the parietal lobe of 
LTM, and the cerebellum of CSM, respectively. 
Although knowledge and experience are memorized 
as abstract relations in LTM, behaviors and skills 
are embodied as wired neural connections in ABM. 
However, all contingent manipulation of knowledge 
and thinking threads are processed in STM [Wang, 
2012c]. 
      The identification and allocation of internal 
knowledge and information in cognitive informatics 
can be used to explain a wide range of phenomena 
of learning and practices. For instance, it explains 
why people have to make the same mistakes in 
order to gain empirical experiences and skills; and 
why skills and experience transformation would be 
so hard and could not be gained by indirect. 

 
6. Formal Models of Intelligence 
Intelligence is the fourth level of cognitive objects 
in the brain. Intelligence may be classified in the 
categories of reflexive, perceptive, cognitive, and 
instructive intelligence [1, 17, 22, 24, 26, 29, 36, 39, 
43, 45, 53, 58, 67, 68, 74, 80, 82, 84, 85, 93-95]. 
Although all animal species possess reflexive and 
perceptive intelligence, only humans and a few 
advanced species developed the ability of cognitive 
and instructive intelligence.  

Definition 19. Intelligence is a human or a 
system’s ability that transforms information into 
behaviors. 

Paradigms of intelligence are such as natural 
intelligence, artificial intelligence, machinable 
intelligence, and computational intelligence. The 
development of cognitive robots, cognitive 
computers, intelligent systems, and software agents 
indicates that intelligence may also be created or 
implemented by machines and man-made systems.  
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Definition 20. Cognitive informatics (CI) is a 
transdisciplinary enquiry of intelligence science, 
information science, computer science, cognitive 
science, and brain science, that studies the internal 
information processing mechanisms and processes 
of the brain, the underlying abstract intelligence (I) 
theories and denotational mathematics (DM), and 
engineering applications in cognitive computing, 
computational intelligence, cognitive robotics, and 
cognitive systems [43, 45]. 

The layered reference model of the brain as 
shown in Fig. 5 [89] provides an overarching logical 
configuration of the mechanisms of the brain as an 
advanced natural intelligence system. The four 
lower layers encompassing those of sensation, 
action, memory, and perception are classified as 
subconscious mental functions of the brain 
equivalent to the mental operating system (MOS). 
However, the three higher layers encompassing 
those of cognition, inference, and intelligence are 
classified as conscious mental functions of the brain 
equivalent to the mental applications (MApps). 

Definition 21. The layered reference model of 
the brain (LRMB) is a hierarchical layout of 
mechanisms and relations of the brain formally 
embodied by 52 cognitive processes at seven layers 
as follows: 

 
 

1 2 3 4 5 6 7

1

2

LRMB (L , L , L , L , L , L , L )

( , , , , , , )

L -  ={vision, hearing, smell, taste, touch, spaciality, time, motion}

|| L -  ={ref

Sensation Action Memory Perception Cognition Inference Intelligence

Sensation

Action






3

4

lex, recurent, temporary, complex}

|| L -  ={SBM, STM, LTM, CSM, ABM}

|| L -  ={attention, consciousness, motivation, emotion, 

                              attitude, imagination, posture,

Memory

Perception

_ _5

 equilibrium}

|| L -  ={object identitfy, abstraction, concept establishment,

                             catergirization, comparison, memorirization, 

                             qualification

Cognition

6

7

, quantification, selection, search}

|| L -  ={deduction, induction, abduction, analogy, 

                            causation, analysis, aynthesis, recursion}

|| L -  ={comprehension

Inference

Intelligence _

_

_ _

, learning, problem solving, 

                                decision making, creation, modeling, planning,

                                information fusion, pattern recognition}

                (14) 
 

      LRMB reveals that the brain can be formally 
embodied by 52 cognitive processes at seven layers 
known as the sensation, action, memory, perception, 
cognitive, inference, and intelligence layers from the 
bottom up. In this view, any complex mental 
process or behavior is a temporary composition of 
the fundamental processes of LRMB at run-time. 
Further details on formal descriptions of the 
cognitive processes of LRMB may refer to [51, 86]. 
      Abstract intelligence, I, is a human enquiry of 
the core and commonly shared properties of natural 
and artificial intelligence at the embody levels of 

neural, physiological, cognitive, functional, and 
logical models from the bottom up. 
 

             
Fig. 5. The layered reference model of the brain (LRMB) 

 
      Definition 22. The mathematical model of 
abstract intelligence (I), embodies the brain in four 
forms known as the perceptive intelligence 

p
 , 

cognitive intelligence 
c
 , instructive intelligence 

i
 , 

and reflexive intelligence 
r
 , corresponding to the 

specific forms of cognitive objects and their 
associate memories in the brain, i.e.:    
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          (15) 

 

where a behavior is a type of cognitive objects 
which embodies an abstract input to an observable 
action.          
      Corollary 5. All forms and paradigms of 
intelligence in the I model share the same 
cognitive informatics foundations as described in 
Definition 21.  
      It is recognized that studies on the natural 
intelligence must be carried out across the 
neurological, physiological, cognitive, and logical 
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levels from bottom-up aggregations and top-down 
reductions. A single layer perception would not 
explain the complex nature of the brain. Therefore, 
the creation of a coherent mathematical model of the 
brain will play the overarching role towards 
modeling the brain and minds as well as the 
hyperstructures of cognitive objects in them. 
 

7. Conclusion 
A set of fundamental cognitive objects in brain 
science and computational intelligence, such as data, 
information, knowledge, and intelligence, has been 
formally described. This basic research has explored 
the cognitive foundations of key cognitive objects 
and their relations. As a result, a set of mathematical 
models of the cognitive objects has been rigorously 
created. This work has led to a set of interesting 
findings on principles and properties of cognitive 
objects towards a coherent theory for  
transdisciplinary cognitive informatics across 
system science, brain science, and cognitive science 
in general, and contemporary data, information, 
knowledge, and intelligence sciences in particular. 
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